Added macrotrend scraping

This commit is contained in:
colttaine 2023-03-05 18:33:51 +11:00
parent bd916decd5
commit 1246dc373a
7 changed files with 299 additions and 26 deletions

6
conf/macrotrends.txt Normal file
View file

@ -0,0 +1,6 @@
https://www.macrotrends.net/countries/CHN/china/population
https://www.macrotrends.net/countries/CHN/china/healthcare-spending
https://www.macrotrends.net/countries/CHN/china/life-expectancy
https://www.macrotrends.net/countries/CHN/china/unemployment-rate
https://www.macrotrends.net/countries/CHN/china/gdp-per-capita
https://www.macrotrends.net/countries/BRA/brazil/gdp-per-capita

View file

@ -43,12 +43,16 @@ class scrape:
#--------[ Scrape Constructor Object ]--------#
def __init__(self, url):
print('\n[{0}]'.format(url))
self.meta = {
"name" : None,
"description" : None,
"units" : None,
"year" : None,
"notes" : [],
"id" : None,
"type" : None,
"scope" : None,
"category" : None,
@ -83,6 +87,9 @@ class scrape:
#--------[ Get Metadata ]--------#
def get_meta(self):
# Break if scrape contains no data
if len(self.data) <= 1: return(1)
# Process Name
self.meta['name'] = self.meta['name'].lower()
self.meta['name'] = re.sub('and\ dependencies ','',self.meta['name'])
@ -103,10 +110,10 @@ class scrape:
key.lower().find('dependency') >=0 ):
key_name.append('country.name')
elif(key.lower().find('year') >=0):
key_name.append('country.name')
key_name.append('year')
else:
tmp_key = self.meta['name']
tmp_key = tmp_key + ' ' + key
tmp_key = key
tmp_key = tmp_key.lower()
tmp_key = re.sub('\[.*\]', '', tmp_key)
@ -120,6 +127,10 @@ class scrape:
tmp_key = tmp_key.strip()
tmp_key = tmp_key.replace(' ','.')
if tmp_key != self.meta['name'].lower().replace(' ','.'):
tmp_key = self.meta['name'].lower().replace(' ','.') + '.' + tmp_key
key_name.append( tmp_key )
self.data_info.append( key_name )
@ -170,6 +181,11 @@ class scrape:
for key in self.data_info[0]:
if re.match('\d\d\d\d', key):
key_year.append( key )
elif 'year' in self.data_info[1]:
y1 = self.data[1][self.data_info[1].index('year')]
y2 = self.data[-1][self.data_info[1].index('year')]
if y1 <= y2: key_year.append( '{0}-{1}'.format(y1,y2) )
if y1 > y2: key_year.append( '{0}-{1}'.format(y2,y1) )
else:
key_year.append( date.today().strftime('%Y') )
self.data_info.append( key_year )
@ -201,22 +217,99 @@ class scrape:
# Get Category
search = self.meta['name'].join(self.data_info[0]).lower().strip()
#--------[ Geographic ]--------#
if( search.find('area') >=0 or
search.find('km2') >=0):
self.meta['category'] = 'geographic'
self.meta['subcategory'] = 'area'
elif( search.find('depression') >= 0 or
#--------[ Demographic ]--------
elif( search.find('population') >=0 ):
self.meta['category'] = 'demogrpahic'
elif( search.find('birth') >=0 or
search.find('fertility') >=0 ):
self.meta['category'] = 'demogrpahic'
self.meta['subcategory'] = 'fertility'
#--------[ Health ]--------#
elif( search.find('life expectancy') >=0 or
search.find('death') >=0 or
search.find('suicide') >=0 or
search.find('mortality') >=0 ):
self.meta['category'] = 'health'
self.meta['subcategory'] = 'mortality'
elif( search.find('depression') >=0 or
search.find('anxiety') >=0 ):
self.meta['category'] = 'health'
self.meta['subcategory'] = 'psychology'
elif( search.find('economic') >= 0 or
search.find('gdp') >=0 ):
elif( search.find('smoking') >= 0 or
search.find('alcohol') >=0 ):
self.meta['category'] = 'health'
self.meta['subcategory'] = 'drugs'
#--------[ Economic ]--------#
elif( search.find('gdp') >=0 and
search.find('trade') <0 and
search.find('health') <0 ):
self.meta['category'] = 'economic'
self.meta['subcategory'] = 'gdp'
elif( search.find('development') >= 0 or
elif( search.find('gni') >=0 ):
self.meta['category'] = 'economic'
self.meta['subcategory'] = 'gni'
elif( search.find('debt') >=0 ):
self.meta['category'] = 'economic'
self.meta['subcategory'] = 'debt'
elif( search.find('inflation') >=0 ):
self.meta['category'] = 'economic'
self.meta['subcategory'] = 'inflation'
elif( search.find('health') >=0 and
search.find('spend') >=0 ):
self.meta['category'] = 'economic'
self.meta['subcategory'] = 'welfare'
elif( search.find('manufature') >=0 or
search.find('business') >=0 ):
self.meta['category'] = 'economic'
self.meta['subcategory'] = 'business'
elif( search.find('import') >=0 or
search.find('export') >=0 or
search.find('invest') >=0 or
search.find('tarrif') >=0 or
search.find('trade') >=0 ):
self.meta['category'] = 'economic'
self.meta['subcategory'] = 'trade'
elif( search.find('unemployment') >=0 or
search.find('labor') >=0 ):
self.meta['category'] = 'economic'
self.meta['subcategory'] = 'labor-force'
#--------[ Education ]--------#
elif( search.find('education') >=0 or
search.find('literacy') >=0 ):
self.meta['category'] = 'education'
#--------[ Development ]--------#
elif( search.find('development') >=0 or
search.find('competitive') >=0 ):
self.meta['category'] = 'technology'
self.meta['subcategory'] = 'development'
self.meta['category'] = 'development'
#--------[ Crime ]--------#
elif( search.find('crime') >=0 or
search.find('homocide') >=0 or
search.find('murder') >=0 ):
self.meta['category'] = 'development'
#--------[ Uncategorised ]--------#
else:
self.meta['category'] = 'uncategorised'
@ -232,6 +325,10 @@ class scrape:
#--------[ Clean Scrape Data ]--------#
def clean(self):
# Break if scrape contains no data
if len(self.data) <= 1: return(1)
for x in range(1, len(self.data)):
for y in range(0, len(self.data[x])):
self.data[x][y] = self.data[x][y]
@ -259,7 +356,6 @@ class scrape:
if self.data[x][y].is_integer():
self.data[x][y] = int(self.data[x][y])
# Convert non-entries to null
if isinstance(self.data[x][y], str):
if( self.data[x][y].lower().find('not determined') >= 0 or
@ -272,11 +368,12 @@ class scrape:
self.data[x][y] = None
#--------[ Save Scrape Data ]--------#
def save(self):
print('\n', self.meta['sources'])
# Break if scrape contains no data
if len(self.data) <= 1: return(1)
key_main = 0
for i in range(0, len(self.data_info[1])):
@ -291,17 +388,22 @@ class scrape:
#--------[ Generate Filename ]--------#
filename = self.data_info[1][key_data].replace('.','-')
filepath = 'data/{0}/{1}'.format(self.meta['type'], self.meta['category'])
if self.meta['subcategory'] != None: filepath = filepath + '/' + self.meta['subcategory']
if len(self.data[0]) > 4:
filepath = filepath + '/' + self.meta['name'].lower().replace(' ','-')
if not os.path.exists(filepath):
os.makedirs(filepath)
filepath = 'data/{0}'.format(self.meta['type'])
if self.meta['type'] == 'historical': filepath += '/' + self.meta['scope'].lower().replace(' ','-')
filepath += '/{0}'.format(self.meta['category'])
if self.meta['subcategory'] != None: filepath += '/' + self.meta['subcategory']
if len(self.data[0]) > 4:
filepath += '/' + self.meta['name'].lower().replace(' ','-')
fullpath = filepath + '/' + filename + '.json'
#--------[ Check File Directory ]--------#
if not os.path.exists(filepath):
os.makedirs(filepath)
#--------[ Open File ]--------#
f = open(fullpath, "w")
f.write('{\n')
@ -310,7 +412,9 @@ class scrape:
#--------[ Update Metadata ]--------#
self.meta['units'] = self.data_info[2][key_data]
self.meta['year'] = self.data_info[4][key_data]
self.meta['scope'] = self.data_info[5][key_data]
if self.meta['scope'] == None:
self.meta['scope'] = self.data_info[5][key_data]
#--------[ Write Metadata ]
f.write(' "metadata" : {\n')
@ -343,13 +447,30 @@ class scrape:
#--------[ Write Actual Data ]--------#
f.write(' "data" : [\n')
f.write(' ["{0}","{1}"],\n'.format(self.data_info[1][key_main], self.data_info[1][key_data]))
if self.meta['type'] == 'historical':
f.write(' ["{0}","{1}"],\n'.format(
self.data_info[1][key_main],
self.meta['id'] + '.' + self.data_info[1][key_data])
)
else:
f.write(' ["{0}","{1}"],\n'.format(
self.data_info[1][key_main],
self.data_info[1][key_data])
)
for row in self.data[1:]:
if row[key_data] != None:
f.write(' ["{0}",{1}]'.format(row[key_main], row[key_data]))
else:
f.write(' ["{0}",null]'.format(row[key_main]))
col_a = row[key_main]
col_b = row[key_data]
if isinstance(col_a, str): col_a = '"{0}"'.format(col_a)
if isinstance(col_b, str): col_b = '"{0}"'.format(col_b)
if col_a == None: col_a = 'null'
if col_b == None: col_b = 'null'
f.write(' [{0},{1}]'.format(col_a, col_b))
if row != self.data[-1]: f.write(',\n')
else: f.write('\n')
f.write(' ]\n')

View file

@ -0,0 +1,118 @@
#!/usr/bin/python3
import requests
import pandas as pd
import re
from bs4 import BeautifulSoup
from datetime import date
def getpage(url):
#--------[ Get Page From URL ]--------#
headers = {
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Methods': 'GET',
'Access-Control-Allow-Headers': 'Content-Type',
'Access-Control-Max-Age': '3600',
'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0'
}
page = requests.get(url, headers)
soup = BeautifulSoup(page.content, 'html.parser')
return soup
def scrapelist():
soup = getpage('https://www.macrotrends.net/countries/topic-overview')
# Get URL list of global metrics
links = []
for table in soup.find_all('div', class_='col-xs-3'):
for link in table.find_all('a'):
links.append('https://www.macrotrends.net' + link['href'])
# Get full country list for each global metric
full_list = []
for link in links:
soup = getpage(link)
table = soup.find('div', class_='col-xs-12')
for url in table.find_all('a'):
full_list.append('https://www.macrotrends.net/' + url['href'])
print(url['href'])
#break
print('\nScraping {0} datasets from MacroTrends\n'.format( len(full_list) ))
return full_list
def scrape(url, meta, data):
#--------[ Get Page From URL ]--------#
soup = getpage(url)
#--------[ Get Metadata ]--------#
url_parts = url.split('/')
meta['name'] = url_parts[-1].replace('-',' ').title()
meta['description'] = soup.find('h1').text
meta['authors'].append( soup.find('span', string='Data Source: ').next_sibling.text )
meta['sources'].append( url )
meta['scope'] = url_parts[-2].replace('-',' ').title()
meta['id'] = url_parts[-3].lower()
#--------[ Extract Table ]--------#
table = soup.find('div', class_='col-xs-6')
table = table.find('table', class_='historical_data_table')
# Get Table Headings
for tr in table.find_all('tr'):
row = [ th.text.strip() for th in tr.find_all('th')]
if len(row) > 1:
data.append( row )
# Get Table Data
for tr in table.find_all('tr'):
row = [ td.text.strip() for td in tr.find_all('td')]
if len(row) > 1:
data.append( row )
#--------[ Process Table ]--------
# Delete rows with incorrect number of variables
key = 0
key_len = len(data)
while key < key_len:
if len(data[key]) != len(data[0]):
data.pop(key)
key = key-1
key = key+1
key_len = len(data)
# Delete unwanted table columns
key = 0
key_len = len(data[0])
while key < key_len:
flag = False
if data[0][key].lower().find('rank') >=0: flag = True
if data[0][key].lower().find('change') >=0: flag = True
if data[0][key].lower().find('notes') >=0: flag = True
if data[0][key].lower().find('gap') >=0: flag = True
if data[0][key].lower().find('Δ') >=0: flag = True
if data[0][key].lower().find('growth') >=0: flag = True
if flag:
for i in range(0, len(data)):
data[i].pop(key)
key = key-1
key = key+1
key_len = len(data[0])

View file

@ -7,9 +7,8 @@ from bs4 import BeautifulSoup
from datetime import date
def scrape(url, meta, data):
def getpage(url):
#--------[ Get Page From URL ]--------#
headers = {
'Access-Control-Allow-Origin': '*',
@ -20,6 +19,12 @@ def scrape(url, meta, data):
}
page = requests.get(url, headers)
soup = BeautifulSoup(page.content, 'html.parser')
return soup
def scrape(url, meta, data):
#--------[ Get Page From URL ]--------#
soup = getpage(url)
#--------[ Get Metadata ]--------#

12
scrape_all.py Normal file
View file

@ -0,0 +1,12 @@
#!/usr/bin/python3
import masterscraper as ms
scrapelist = ms.macrotrends.scrapelist()
for url in scrapelist:
scrape = ms.scrape(url)
scrape.get_meta()
scrape.clean()
scrape.save()

11
scrape_single.py Normal file
View file

@ -0,0 +1,11 @@
#!/usr/bin/python3
import masterscraper as ms
scrape = ms.scrape('https://www.macrotrends.net/countries/TUR/turkey/population')
scrape.get_meta()
scrape.clean()
scrape.save()